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Dynamic Stereochemistry of Tetraarylmethanes and 
Cognate Systems. The Role of the Permutation Subgroup 
Lattice1 

James G. Nourse and Kurt Mislow* 

Contribution from the Department of Chemistry, Princeton University, 
Princeton, New Jersey 08540. Received October 22, 1974 

Abstract: The dynamic stereochemistry of tetraarylmethanes is treated using a rigorous group-theoretical approach. Percep­
tual difficulties inherent in the tetraaryl case, that are absent in the previously studied di- and triaryl cases, are elucidated in 
group-theoretical terms. The possible noninverting (of configuration) modes are given and mechanisms which require the 
least ring twisting to effect an overall permutational change corresponding to these modes are provided. Implications of the 
(non)existence of nonself-inverse double cosets on the symmetry of the potential surface are discussed. Extensive use is made 
of the permutation subgroup lattice to obtain isomer descriptors, to delineate the possibilities for residual stereoisomerism, 
and to gauge the effect of combining (intersecting) experiments. The construction of topological representations is discussed. 
Particular emphasis is placed on novel uses of the group and lattice structures which occur in problems of this kind. 

In our first treatment of the dynamic stereochemistry of 
tetraarylmethanes,2 a group theoretical approach was taken 
which permitted discussion of conformational changes in 
this system in terms of mode equivalent rearrangements. 
The present paper has as its aim the introduction of con­
cepts, based on group theory, which permit a fuller appre­
ciation of the stereochemical subtleties of this system while 
capable at the same time of extension in principle to flexible 
molecular systems other than those explicitely treated here­
in. 

By way of background, we note that the results of empiri­
cal force field calculations3 clearly indicate that all substi­
tuted tetraphenylmethanes and -silanes prefer to adopt a S 4 
or \p-S4 conformation.4-6 Thus, our analysis is predicated 
on the assumption of S 4 symmetry throughout. 

A Perceptual Difficulty Explained. As was previously 
noted,2 the physical act of ring rotation in tetraaryl systems 
results in a shifting of the S 4 or \p-S4 axis; it is this fluxion-
al character of the symmetry axis which makes isomeriza-
tions in these systems so difficult to envisage, and differen­
tiates them from isomerizations in the corresponding di-
and triaryl systems7 where the C2 (or ^-C2) and C3 (or 
1//-C3) axes remain fixed in space. We shall now show that 
this baffling behavior of tetraaryl systems can be traced to, 
and understood in terms of, the special relationship between 
the molecular point group and the group of skeletal permu­
tations.5 For this purpose the definition of a normal 
subgroup is required. A subgroup is normal if it is left intact 
by conjugation of all the elements of the full group.8" 

Consider diphenylmethane in the helical conformation.7 

The skeletal permutation group is S2 =* C2, the ring flip 
group5 is (S2)2 , and the full permutation group8b is S2[S2] 
2* (S2)2 A S2. The molecular point group is C2. Obviously, 
and trivially, the molecular point group is a normal 
subgroup of the skeletal permutation group, C2. Similarly, 
for triphenylmethane in the propeller conformation, the 
skeletal permutation group is S3 ==< Z)3, the ring flip group 
is (S2)3, and the full permutation group8 is S3[S2] =* (S2)3 

A S3. The molecular point group, C3, is also a normal 
subgroup of Z)3. 

In the case of tetraphenylmethane, the skeletal permuta­
tion group is S4 =* Td the ring flip group is (S2)4 , and the 
full permutation group2 is 84[S2] a* (S2)4 A S4. If the mo­
lecular point group is S4 (or \p-S4, as for all substituted te­
traphenylmethanes4), a new situation arises: S4 is not a 
normal subgroup of Tj. Put differently: there is only one C2 

subgroup in C2, there is only one C3 subgroup in Z)3, but 
there are three conjugate £4 subgroups in Tj.IOa It is this 
characteristic that is at the heart of the previously dis­
cussed2 perceptual difficulty. To illustrate: in Figure 1 are 
shown three views each of three S4 structures differing only 
in the orientation of the S4 axis. If a constant viewing axis 
is maintained (a column of structures in Figure 1) a sym-

Figure 1. Three Si, structures differing in the orientation of the symme­
try axis seen from three different views. The symmetry axis orientation 
is maintained across each row. The viewing axis is maintained down 
each column. 
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Table I. Rearrangement Modes for S4 Tetraarylmethanes 
1 

0F3P 

(137K248) 
(153X264) 
(175X286) 
(375X486) 
(157X268) 
(357X468) 
(135X246) 
(173X284) 

5b 
2F3P 

(138X247) 
(153264X78) 
(176285X34) 
(12X375486) 
(167X258) 
(368X457) 
(146X235) 
(184273X56) 

9 
2F3P 

(154X263) 
(148X237) 
(367X458) 
(145X236) 
(184X273) 
(185X276) 
(376X485) 
(158X267) 

13 
OFOP 

E 
(15)(37)(26)(48) 

17 
2F0P 

(12X56) 
(16J(25)(37)(48) 
(15X26X38X47) 
(34X78) 

21 
0F2.2P 

(13X24X57X68) 
(17)(28)(35)(46) 

2 
1F3P 

(137248) 
(153264) 
(176285) 
(375486) 
(158267) 
(368457) 
(146235) 
(184273) 

6 
2F3I 

3c 
1F3P 

3b 4 
1F3P 1F3P 

(137)(248)(56) (12)(375)(486) (136245) 
(164253) 
(175286) 
(386475) 

(135246) (376485) 
(168257) (173284) 
(357468) (186275) 

(157X268X34) (153)(264)(78) (148237) 
(12)(357)(468) (173)(284)(56) (157268) 
(135X246X78) (175)(286)(34) (358467) 

(174283) 

> 
(138247X56) 
(164253X78) 
(175286X34) 
(12X386475) 
(168257X34) 
(12X357468) 
(135246X78) 
(174283X56) 

10 
3F3P 

(147X238X56) 
(163)(254)(78) 
(186X275X34) 
(12X385X476) 
(168X257X34) 
(12)(358)(467) 
(136)(254)(78) 
(174X283X56) 

14 
4F2,2P 

la 
2F3P 

(148237X56) 
(163X254) 
(186X275) 
(385X476) 
(157268X34) 
(12X358467) 
(136245X78) 
(174X283) 

l i e 
3F3P 

(12X367X485) 
(185276) 
(163254) 
(183274) 
(145X236X78) 
(148)(237)(56) 
(158X267X34) 
(385476) 

(14)(23)(58)(67) 
(18X27X36X45) 

18 
3F0P 

(12)(34)(56) 
(16)(25)(3748) 
(16)(25)(3847) 
(1625X38X47) 
(12)(34)(78) 
(12)(56)(78) 
(34X56X78) 
(1526X38X47) 

22 
3F2,2P 

(14X23X5867) 
(18X27X3546) 
(1827X36X45) 
(14)(23)(5768) 
(18X27X3645) 
(1423X58X67) 
(1728X36X45) 
(1324X58X67) 

(138247) (154263) 

lb 
2F3P 

(147X238) 
(154263X78) 
(186275X34) 
(12X376485) 
(168X257) 
(358X467) 
(136X245) 
(173284X56) 

life 
3F3P 

(12X376X485) 
(145236) 
(167258) 
(367458) 
(154)(263)(78) 
(184X273X56) 
(185X276X34) 
(147238) 

15 
IFOP 

(12) 
(1526X37X48) 
(1625)(37)(48) 
(15)(26)(3748) 
(78) 
(56) 
(34) 
(15X26X3847) 

19 
4F0P 

(12X34X56X78) 
(16X25X38X47) 

23 
1F2.2P 

(1423X57X68) 
(17X28X3546) 
(1827X35X46) 
(13)(24)(5768) 
(1728)(35)(46) 
(13X24X5867) 
(17X28X3645) 
(1324)(57)(68) 

5c 
2F3P 

(137248X56) 
(164X253) 
(176X285) 
(386X475) 
(158267X34) 
(12X368457) 
(146235X78) 
(183X274) 

8 
3F3P 

(12X368X457) 
(176)(285)(34) 
(164)(253)(78) 
(183X274X56) 
(146X235X78) 
(138)(247)(56) 
(167)(258)(34) 
(12)(386)(475) 

12 
4F3P 

(147238X56) 
(163254X78) 
(185276X34) 
(12X385476) 
(167258X34) 
(12X367458) 
(145236X78) 
(183274X56) 

16 
2F0P 

(12X34) 
(1526)(3748) 
(1625X3847) 
(1625X3748) 
(12X78) 
(56X78) 
(34X56) 
(1526X3847) 

20 
2F2.2P 

(1423X5867) 
(1827X3546) 
(1324X5768) 
(1728X3645) 

24 
2F2.2P 

(1423X5768) 
(17)(28)(36)(45) 
(18X27X35X46) 
(13)(24)(58)(67) 
(1728X3546) 
(1324X5867) 
(1827X3645) 
(14)(23)(57)(68) 

metrical structure is seen only where the viewing axis coin­
cides with the symmetry axis. 

It is thus impossible to obtain a mental fix on the SA or 
\p-S4 axis when attempting to visualize the possible confor­
mational changes. By contrast, analysis of a tetraarylmeth-
ane structure with Dj symmetry2 would be far easier since 
Dj is a normal subgroup of Td, i.e., there is only one Dj 
subgroup of Td- Hence, one could view all possible Dj 

structures from the same perspective (constant viewing 
axis) and see a symmetrical conformation, although the 
three Cj axes which would spring into view would not be 
equivalent. 

Rearrangement Modes. The full permutation group of te­
traarylmethanes is the wreath product10b S4S2] of order 
384.IOc To determine the possible rearrangement modes11 

(racemic modes,12 differentiable isomerizations,13 and basic 
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sets '4 are related concepts) it is necessary to find the double 
cosets of the S 4 point group in S4[Sj]. It is found2'15 that 
there are 28 double cosets in the case, i.e., 28 modes (56 in a 
chiral environment). We must remember, however, that in 
considering only the conformational changes in a tetraaryl 
system Ar4Z, we are restricting our inquiry exclusively to 
those isomerizations (permutations) in which the absolute 
configuration at the center Z is retained.16 These permuta­
tions form a subgroup G^ 2 of index 2 in S4[S2]. This 
subgroup of order 192 is itself a wreath product 

G192 =* A4[S2] a T [S2] 

where A4 is the alternating permutation group on 4 objects 
and T the tetrahedral rotation group. 

G192 is the feasible permutation group for tetraarylmeth-
ane, as defined by Longuet-Higgins.9'17 Restriction of the 
double coset decomposition of S4[S2] to Gi92 yields 28 
modes which are listed in Table I.18 Permutational repre­
sentations are based on the eight ortho ring positions shown 
in the structure below; the S 4 point group is therefore rep­
resented by the set of permutations: 

S4 = |E,(15)(37)(26)(48),(1357)(2468),(1753)(2864)| 

The 28 modes are reduced in number to 24 when nonself-
inverse double cosets19 are grouped together on the assump­
tion of microscopic reversibility. In other words, when the 
inverse of a rearrangement is included in the feasible stereo­
chemistry, only self-inverse double cosets survive, the non-
self-inverse ones having been collected in pairs (four pairs 
in the present case). 

The occurrence of nonself-inverse double cosets is a pure­
ly group-theoretical result and is independent of the partic­
ular representation.19 Furthermore, the nonexistence of 
nonself-inverse double cosets in a double coset decomposi­
tion of a group appears to have implications on the symme­
try of the potential energy surfaces involved. The surface 
E3„/E3 is considered where E3,, represents the 3« dimen­
sional surface of the cartesian coordinates of n identical 
atoms and E3 represents the Euclidean group in three di­
mensions (translations and rotations-reflections). 

The elements of E3 are "modded out" of E3,, to yield the 
surface E3„/E3. That is, the points on the surface E3„ which 
are related by translations or rotations-reflections are iden­
tified. Points on this surface represent isomers and their en-
antiomers. The nonexistence of nonself-inverse double cos­
ets implies that for all g E Sn, there are p\,pi (E P such 
that p\gpi = g~]. This means that for any path on E3„/E3 

representing a degenerate isomerization from a to b (a and 
b have point group symmetry P) there is an identical path 
from b to a. This condition need not obtain if S„/P yields 
nonself-inverse double cosets. 

More restricted conditions can be established by consid­
ering the surface E 3 n / E 3

+ where E 3
+ is the positive Euclid­

ean group which includes only translations and rotations. A 
point on this surface represents an isomer without its enan-
tiomer. The condition of equivalent or enantiomeric paths 
between a and b will obtain if there are no nonself-inverse 
modes of the type:12 

Table II. Representative Least Motion Ar-C Dihedral Angle 
Changes'* (degrees) for Modes in Table I 

Ring 

1 
2 
3 
4 

1 

-120 
+ 120 
+ 120 

0 

6 

2 

-120 
+ 120 
+ 120 
180 

7a 

3a 

-120 
-60 
+ 120 

0 

Ib 

3b 

+60 
0 

-120 
+ 120 

8 

4 

0 
-120 
-60 
-120 

9 

Sa 

-120 
-60 
+ 120 
180 

10 

Sb 

-120 
+ 120 
-60 
180 

11a 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

-120 
-60 
-60 
0 

116 

+60 
180 

-120 
-60 

18 

180 
180 
180 
0 

+60 
-60 
+120 

0 

12 

+60 
180 
+60 
-60 

19 

180 
180 
180 
180 

+ 120 
+60 
0 

-60 

13 

0 
0 
0 
0 

20 

-60 
-60 
-120 
-120 

-60 
-120 
180 
-60 

14 

-60 
-60 
+60 
+60 

21 

+ 120 
+ 120 
-120 
-120 

+ 120 
+60 
180 

+ 120 

15 

180 
0 
0 
0 

22 

-60 
-60 
+60 

-120 

+60 
-60 
-60 
0 

16 

180 
180 
0 
0 

23 

+ 120 
+ 120 
+60 

-120 

-60 
+60 
180 

+120 

17 

180 
0 

180 
0 

24 

-60 
+ 120 
-120' 
+60 

a These are the dihedral angle changes for a structure with 0 = 60 
(ref 3, Figure 2). Mode 1 reads: the ring in site 1 is rotated 120° 
counterclockwise (as viewed toward the center of the molecule), 
the ring in site 2 is rotated 120° clockwise, etc. 

M = RgR\j Rgrlgg\R U Rg2-lggiR U • . . 

for R = rotation point group and g\,g2 ^P-R. These are 
collections of double cosets of the rotation point group in 
the full permutation group. 

A pictorial example may aid in understanding these con­
ditions. Consider the substitution of a trigonal bipyramid 
structure. Two processes which are shown are inverses of 
each other. 

L4 

X-
J - T < 1 4 6 » . T 

+ L6 » L< 

JL. 
+ L1 (1) 

SL, 

L4 

X-
U 

J - T ( 1 6 4 ) . T 

+ L6 >- L4' L3 

+ L1 (2) 

The forward reaction (reaction 1) involves equatorial at­
tachment of the ligand while the reverse (reaction 2) in­
volves axial attachment. These two processes do not "look 
alike" yet would be microscopic reverses of each other (with 
proper ligand labeling). No sequence of rotations and re­
flections will cause these single-step processes to resemble 
each other. Stated differently, the permutations (146) and 
(164) are in different double cosets of D^, in S6.20a 

While it is beyond the scope of the present paper, it is 
possible to establish conditions for equivalence of these two 
processes 1 and 2 by multiple steps through other TBP or 
symmetrical intermediates. The necessary mathematical 
structure is the double coset algebra.1 9 a 2 0 b An example of 
the two-step process is given by the permutations: 

(26)(34)(132)(26)(34) = (146) 

(26)(34)(123)(26)(34) = (164) 
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Table III. Least Motion Ar-C Dihedral Angle Changes 
(degrees) Corresponding to Mode 11a 

Ring 
1 -60 +60 180 -120 
2 +60 -60 -120 180 
3 180 +120 -60 +60 
4 +120 180 +60 -60 

Table IV. Modes for a D^ Tetraarylmethane0 

(1,12) (6) (16,21) 
(3fl,32>,8,10) (9) (17,20) 
(2,4,lla,lli) (13,14) (18,23) 

a Numbers correspond to modes listed in Table I. 

Figure 2. Lattice of subgroups between the point group C2 and the fea­
sible permutation groups G192 which contain intact modes. See Tables 
I and V. 

Mechanistic Considerations. Although it cannot be em­
phasized too strongly that a permutational description of an 
isomerization gives no intrinsic information about interme­
diate states, i.e., about the mechanism of isomerization,2 it 
is of course possible to associate mechanisms with permuta­
tions if the physical motions bring about, and are therefore 
consistent with, a given permutational change. A particu­
larly interesting mechanism is the one which requires the 
least motion. For a given ring, twists of . . . - 6 6 0 ° , - 3 0 0 ° , 
+60° , +420° . . . cause the same permutational change but 
a mechanism requiring a twist of +60° may be the most 
reasonable. Descriptions of twist angle changes correspond­
ing to least motion for the possible modes are given in Table 
II. These descriptions are not unique in that the ring per­
mutations21 

(12)(34);(1423)±;(1324)± 

yield a mechanism corresponding to the same mode. For ex­
ample, each of the four mechanisms shown in Table III cor­
responds to mode 11a, and there are of course countless 
others. 

Mode 14 can be represented by a particularly facile mo­
tion which takes an £4 structure through a Did structure 
and back to an S4 structure.3 This "rocking" motion may 
have such a low barrier that it may make more sense to talk 
about tetraarylmethanes (in particular tetraphenylmeth-
anes) as having "time averaged" Did symmetry (on an 
NMR time scale). However, this added symmetry reduces 
the number of possible rearrangement modes, and as a re­
sult, the 28 modes given in Table I are reduced to 13 in 
number (Table IV). These are the double cosets of Did in 
S4[S2] restricted to Gi92. There is still one pair of nonself-
inverse double cosets, (5a, lb) and (56,7a), so that there are 
12 modes if microscopic reversibility is assumed.22 

The Wreath Product Subgroup Lattice. Further chemi­
cally useful information can be most efficiently obtained by 
considering the lattice of subgroups24 between the point 
group 5*4 and the wreath product 84[S2], i.e., all subgroups 
of S4[S2] which include S4. Such subgroups will include in­
tact double cosets of S4 in 84(82]. If we limit ourselves to 
include just the feasible (noninverting) permutations, the 
pertinent lattice of subgroups is between point group C2 

and wreath product G192. 
This lattice is shown in Figure 2. It was constructed by 

collecting the modes in Table I into subgroups of G192 
which contain C2 (mode 13).25 The modes contained by 
each group are indicated in Table V. Each group on the lat­
tice in Figure 2 is a subgroup of any group above it to which 
it is connected. Subgroups with an TV are normal in Gi 92. 
The significance of the asterisks will be discussed in the 
next section. 

Isomer Descriptors. When a stereochemical problem is 
treated using permutation groups, the isomers of a maxi­
mally labeled structure26 correspond to the right cosets, gR, 
of the rotation group in the full permutation group. In the 
tetraaryl case the rotation group is C2 (i.e., the rotational 
subgroup of the skeletal point group S4) and the full per­
mutation group is S4[S2]. Consequently there are 

J S 4 [ S 2 ] I - 384 _ 1 9 2 

|C2 | 2 

right cosets of Ci in S4[S2], corresponding to 192 isomers of 
a maximally labeled tetraarylmethane.2 In this section it 
will be shown how these isomers can be given descriptors27 

which are based on the subgroup lattice discussed in the 
previous section and which correspond to traditional chemi­
cal concepts. 

Consider the sequence of groups in the left-hand column 
of Table VI, which make up part of the chain of groups des­
ignated with asterisks in Figure 2. The group S4[S2] con­
tains, as we saw, all 192 right cosets of C2 (isomers). The 
subgroup Gi 92 contains 96 of these isomers and those in 
Gi92 differ from those not in Gi92 by their absolute configu­
ration at the central atom Z. Hence a two-valued descriptor 
such as C (configuration, which could correspond to an R 
or S descriptor) can be assigned to all isomers depending on 
whether or not they are contained in Gi92- The 96 isomers 
in Gi92 can be further partitioned into three sets of 32 each, 
which differ by the orientation of the S 4 (or i/--S4) symme­
try axis; Ge4 is one such set. A second, three-valued descrip­
tor such as O (orientation) designates the orientation of the 
S 4 axis. Modes in Table I which are designated «F3P 
change S 4 axis orientation and hence the value of this des-. 
criptor. The subgroup G32C contains half the isomers in G64 
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J 32b ->j4b 
G n b G8b 

J 4 b G4C 

1 ] 
2 1 
3a 1 
3fc 
4 
5a 
Sb 1 
6 1 
7a ] 
lb 
8 
9 

10 
11a 
H i 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 

1 
1 
1 
1 

I 1 

1 

-

L 1 
1 1 

1 
_ 

L 1 
1 1 

— 
1 1 
I 1 
I 1 

-
_ 

L 1 

-

-

-
-
-
-

-

-

-
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

-

-

-
-
-
-

-

-

-
1 
1 
_ 
1 
1 
_ 
1 
1 
1 
-
— 
1 

-

-

-
-
-
-

-

-

-
1 
-
-
1 
1 
-
1 
-
_ 
1 
1 
-

-

-

-
-
-
-

-

-

_ 
1 
_ 

-
_ 
_ 
_ 
-

1 

-

-
-
-
-

-

— 

1 
1 
1 
-
-
-
-
1 
-
1 
-
— 
-

-

-

-
1 
-
-

1 

— 

_ 
1 
1 
_ 
-
_ 
— 
1 
-
1 
_ 
_ 
-

-

-

-
-
-
-

-

— 

-
1 
-
-
1 
1 
-
1 
-
_ 
-
— 
-

1 1 

1 

1 

and those in G32c differ from those not in G32C by their heli-
city. A third, two-valued descriptor such as H (helicity) 
serves to designate each set. This is the helicity defined ear­
lier2 which can be associated with the two two-bladed pro­
pellers of the S 4 structure, the two aryl rings (blades) in 
each propeller being interconvertible by a C2 or \p-C2 oper­
ation. Modes in Table I which are designated «F2,2P 
change helicity and hence the value of this descriptor. Fi­
nally, C2 represents one of the 16 isomers in G32c. These 16 
isomers are interconverted by flipping rings by -K radians, 
and hence there are four appropriate descriptors which are 
two-valued and which designate the N (endo) and X (exo) 
edge5 for each of the four rings. Any mode with «FmP, n > 
0, will change the values of some or all of these descriptors. 
Thus a maximally labeled tetraarylmethane isomer can be 
classified by giving values to seven descriptors;30 for exam­
ple, if the reference isomer shown below (left) were arbi­
trarily given the designation C + O 1 2 H + XiX 2 X 3 X 4 , the test 
isomer (right) would be designated C + O 1 3 H-NiX 2 N 3 X 4 . 3 1 

Table VI. Descriptors for Ar4Z Isomers 

reference isomer test isomer 

It would be possible to assign descriptors based on any 
group chain from C2 to G192 in Figure 2, although other des­
criptor sets would be generally less "intuitive" chemically. 
Nevertheless it is possible to describe a kind of uniqueness 
property to the set of descriptors given above. The chain of 
groups, marked with asterisks in Figure 2 (with which the 
descriptors are associated), form what is called a composi­
tion series for the group S4[S2].3 2 Briefly each group is a 
maximal normal subgroup of the group directly above it in 

Group 

S4[S2I 

Gi 9 2 

GM 

G32 

C2 

Isomers 

192 

96 

32 

16 

1 

Decomposition of isomer set 

Two enantiomeric sets 

Three sets differing in 
orientation of S4 axis 

Two sets differing in 
helicity 

16 isomers differing in 
endo-exo disposition 
of rings 

Descriptor 

Configuration 
C+ , C _ 

Orientation 
O1 2-O1 3 1O1 4 

Helicity 
H+ , H _ 

Endo-exo 
X1, X2, X3, X4 

N ,,N2 , N3, N4 

the chain. A standard result of finite group theory is the 
Jordan-Holder theorem which states that any two composi­
tion series in a group are equivalent.3213 Thus a set of des­
criptors which can be related to a composition series are 
unique up to this equivalence.33 

It is possible to make further use of composition series in 
determining the final four two-valued descriptors (rather 
than using endo-exo designations). The relevant group 
chain is 

C2 • G g c —• G i '32c 

and is marked with asterisks in Figure 2. The cosets of G ] 6 

and G32c are sets of isomers with an even or odd number of 
rings endo (and therefore exo). The cosets of Ggc in Gi6 are 
sets of isomers with constant pairwise relationships across 
the S 4 axis. The cosets of G4c in G8c are sets of isomers with 
all other pairwise relationships constant. Finally the cosets 
of C2 in G4c are isomers which differ in all endo-exo desig­
nations. These descriptors would be conceptually disadvan­
tageous because they do not describe intuitive chemical 
concepts. However, in determining the action of modes on 
sets of isomers, these descriptors are rigorous and unique in 
the sense that the composition series is unique. 

Residual Stereoisomerism. In our recent work on triaryl-
methanes34 we found it convenient to introduce the concept 
of residual stereoisomerism to describe distinct sets of ap­
propriately substituted interconverting isomers at a particu-
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Table VII. Some Residual Stereoisomerism Possibilities in 
Maximally Labeled Ar4Z 

Restriction 

AU rings rotate freely 
Only an even number 

of rings flip (0,2,4) 
No change of SA axis 

orientation 
No change of helicity 
No ring flips 
Rocking motion only 
All motion frozen out 

Group 

G192 

G96 

G64 

G 3 2C 
Gua 
G4b 

C1 

No. of dl pairs" 

1 
2 

3 

6 
16 
48 
96 

a The groups listed in the center column correspond to structures 
with a fixed absolute configuration,16 C+ or C _. The dl pair in each 
case contains also those structures with the opposite absolute con­
figuration, i.e., those with C+ and C_. 

lar time scale of observation. This situation will occur 
whenever the isomerizations (permutations) in a mode or 
modes which can occur at a given time scale of observation 
generate a subgroup of the full permutation group.35 The 
index of this subgroup in the full permutation group is the 
number of residual stereoisomers for a maximally labeled 
structure. The possibilities for residual stereoisomerism are 
numerous in the tetraaryl case but can be enumerated by 
reference to the subgroup lattice in Figure 2. The number of 
residual stereoisomers resulting from a single rearrange­
ment mode is equal to 384 divided by the order of the small­
est group in Figure 2 which contains this mode. For exam­
ple, mode 1 leaves 384/12 = 32 residual diastereomers, 
G] 2a being the smallest group containing mode 1. Mode 10 
leaves 384/192 = 2 residual enantiomers (the enantiomers 
based on the configuration at the central carbon), G192 
being the smallest subgroup containing mode 10. A combi­
nation of two or more modes leaves a number of residual 
stereoisomers equal to 384 divided by the order of the 
smallest group which contains all the modes involved. The 
experimental observation of residual stereoisomerism de­
pends of course on the energetics of the process involved. 
Thus if mode 10 were able to occur at a given time scale of 
observation, only the two conventional enantiomers of a 
maximally labeled tetraarylmethane would be observed in 
spite of the occurrence of any other process.3 

Table VII offers a further illustration of the way in which 
the subgroup lattice is utilized to determine the number of 
residual stereoisomers. Beginning with Gi92, corresponding 
to one of the two enantiomeric sets containing 96 isomers 
each (i.e., operationally one dl pair; see Table VI), the 
number of residual stereoisomers steadily increases (right 
column) as motion after motion is frozen out (left column). 
The example in Table VII refers of course just to a portion 
of the subgroup lattice in Figure 2, arbitrarily chosen for 
purposes of illustration; different portions could have been 
selected, corresponding to different restrictions on the mo­
tions and consequently different numbers of residual iso­
mers. 

Intersecting Experiments. Further use can be made of the 
subgroup lattice in the design and choice of experiments. 
The double cosets of any of the groups on the lattice will 
contain intact modes, and the lattice operations of union 
and intersections therefore determine analogous operations 
on sets of modes. It follows that a single, and possibly diffi­
cult, experiment can be replaced by a combination of sim­
pler experiments performed on systems which share some, 
but not all, of the features of the more complex system. 

As a specific example, consider the problem of determin­
ing whether residual stereoisomers exist in a maximally la­
beled tetraaryl system Ar4Z. Such a compound would be 

difficult to obtain but the problem can be solved without di­
rect access to this system, by application of the concept de­
veloped above. Consider the following two systems, each of 
which is less complex (and more easily obtained) than max­
imally substituted A^Z: one in which the four aryl rings 
are different but all possess local C2 symmetry (which we 
shall call (Ara)4Z), and one in which the four rings are all 
the same, but none of them have local C'2 symmetry 
((Ars)4Z). In (Ara)4Z, ring exchange can be monitored, but 
ring flipping cannot, whereas the reverse is true for 
(Ars)4Z. On the assumption of £4 or ^-S" 4 symmetry for all 
systems under discussion3 it is seen by reference to Figure 2 
and Table 1 that the effective symmetry groups36 for A^Z, 
(Ard)4Z, and (Ars)4Z are C2, G320 and Gi2a. respectively. 
Now, the number of residual diastereomers is determined 
by the modes which are relevant on the given time scale of 
measurement, and these modes will just be collections of the 
28 modes already described. In the present case, the modes 
for the (Ard)4Z experiment (double cosets of Gua in G192) 
will contain intact modes from Table I as will the modes for 
the (Ars)4Z experiment (double cosets of Gi2a in G192). Per­
forming these two experiments (assuming common mecha­
nisms) permits a pinpointing of the actual mode (from 
Table I) since the mode determined by the (Ara)4Z experi­
ment will be a different collection of those in Table I from 
that determined by the (Ar5^Z experiment. The actual 
mode (from Table I) must be one common to these two col­
lections. This procedure is facilitated by noting that the in­
tersection of G32C and Gi2a on the subgroup lattice (Figure 
2) is C2, which is the effective symmetry group for the 
Ar4Z experiment.37 The lattice structure thus determines 
the intersection of the collection of modes. The result is that 
performance of two relatively easy experiments with effec­
tive symmetry groups G32a and G 12a is equivalent37 to per­
forming one difficult experiment with effective symmetry 
C2. 

This conceptually simple example (of an experiment to 
isolate residual diastereomers) was chosen only to illustrate 
the use of the lattice operations. Other experiments can 
have effective symmetry groups larger than the molecular 
point group (in a general case). For example, NMR experi­
ments (hamiltonians) are invariant to all permutations of 
magnetically equivalent nuclei, not just those included in 
the permutation representation of the point group. The lat­
tice theoretic considerations would apply to these or any ex­
periments. 

Topological Representations. In complicated stereochem­
ical problems it is often convenient to introduce interconver-
sion graphs or "topological representations", since such rep­
resentations help to facilitate a grasp of the relationships 
between interconverting structures (represented by verti­
ces). Although it seems unlikely that a full representation of 
84[S2] (two disconnected interpenetrating 96-vertex 
graphs) would be of much use,38 we believe that it is worth­
while to describe the appearance and construction of appro­
priate graphs in terms of the concepts developed in this and 
the preceding2 paper. 

We begin by pointing out that wreath products of the 
type Sn[S2], also called hyperoctahedral groups}9 are iso­
morphic to symmetry groups of n dimensional cubes (Table 
VIII); it is this property which accounts for the appearance 
of so many cubical graphs in the literature40 which deal 
with permutation processes corresponding to elements of 
Sn[S2] for n = 2 or 3. Since topological representations will 
be invariant to action of the full permutation group in­
volved,41 it is reasonable to use the hypercube as a starting 
point for the construction of a graph. The problem now is to 
determine the action of G192 on the 16-vertex hypercube. 
Since a transitive permutation representation of G192 is in-
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Figure 3. Octahedral graph of six isomers differing only in their orien­
tation and helicity descriptors. 

Table VIII. Realization of Wreath Products Sn [SJ as 
"Hyperoctahedral Groups" 

Dimension 
(n) 

1 
2 
3 
4 

Geometric 
realization 

Line segment 
Square 
Cube 
Hypercube 

No. of 
vertices 

21 

22 

23 

2" 

Isomor­
phism to 

point group 

C2 

D4 

oh a 

Order of 
group 

2 
8 

48 
384 

a This is the four-dimensional point group XLVII defined by E. 
Goursat, Annates Scientifique de L 'Ecole Normale Superieure, 6, 9 
(1889). We are grateful to a referee for pointing our attention to 
this reference. 

volved there must be a group of order 192/16 = 12 which 
fixes one vertex.42 Referring again to Figure 2, there are 
two subgroups of G192 of order 12 which contain Ci, and 
which are isomorphic to each other and to A4 a* T. Choos­
ing G 12a, it can be seen from Tables I and V that the permu­
tations in this group change either the helicity or the orien­
tation of the S 4 axis but none of the endo-exo designations. 
Thus, the vertices of the hypercube can be considered as 
representing the 16 possible endo-exo combinations.2 Each 
vertex on the graph can be "expanded" into an octahedron 
to reflect the tetrahedral symmetry and the six possible 
values for the two descriptors changed by this group (S 4 

axis orientation and helicity). Thus the vertices of the 96-
vertex graph can be situated at the vertices of 16 octahe­
drons which are themselves located at the vertices of a hy­
percube. Figure 3 shows one such octahedron, with the ap­
propriate descriptor labels. The configuration descriptor 
(C) is invariant. The next two descriptors exhaust all possi­
ble combinations of orientation (O) and helicity (H), thus 
"filling" the six vertex positions on the octahedron. The 
four remaining descriptors are again invariant, since the 
particular vertex of the hypercube at which the octahedron 
is situated itself represents a given exo-endo situation. The 
16 octahedra located on this particular hypercube will 
therefore represent all 96 isomers with a C+ configuration. 
The other, disjoint graph will be identical, with the one dis­
cussed above, except that all configurations are now C_. 

It should be noted that for the purpose of graphical rep­
resentation, it is not essential to use an octahedron; a prism2 

or a hexagon would be equally satisfactory. The connectivi­
ties of these graphs would not necessarily correspond to the 
connectivities of the component polyhedrons. Methods for 
determining connectivities of topological representations 
(double coset matrices) have been given. '9 a 4 3 For each of 
the modes in Table I the connectivity at one vertex is equal 
to the number of permutations divided by 2.44 Thus mode 

10, for example, connects a given isomer to four others. 
Totalling the connectivities for all 24 modes gives 96 as 
would be expected since there must be some permutation 
which connects any pair of isomers. 

Notation and Conventions. Permutations are written as 
(1357) and read: move whatever is in site 1 to site 3; move 
whatever is in site 3 to site 5, etc. Multiplication of permu­
tations is from left to right. Gi [G2] is the wreath product of 
G] and G2 or the composition of Gi around G2. X inserted 
between two groups means the direct product of the two 
groups. A inserted between two groups means the semidi-
rect product of the two groups. The first group is the nor­
mal subgroup. Sn is the symbol for the symmetric group of 
n objects. S4 , D2d, C2 are the usual point groups. IG2] 
means the order (number of elements) of the group G2. Pos­
itive torsion angles are clockwise as defined in ref 3. 

References and Notes 

(1) We gratefully acknowledge support of this work by the National Science 
Foundation (MPS74-18161). 

(2) M. G. Hutchings, J. G. Nourse, and K. Mislow, Tetrahedron, 30, 1535 
(1974). 

(3) M. G. Hutchings, J. D. Andose, and K. Mislow, J. Am. Chem. Soc, part I 
in this issue. 

(4) Note that the symbol S4 is used for the point group and S4 for the sym­
metric permutation group on four objects. 

(5) Notations, conventions, and definitions are those introduced in the first 
paper2 except for those noted in the last section. 

(6) The singular exception is the parent compound, tetraphenylmethane it­
self, for which a D2t( conformation is preferred in the free state,3 al­
though S4 symmetry is maintained in the crystal. 

(7) 'D. Gust and K. Mislow, J. Am. Chem. Soc., 95, 1535 (1973). 
(8) (a) See F. A. Cotton, "Chemical Applications of Group Theory", 2nd ed, 

Wiley-lnterscience, New York, N.Y., 1971, p 11. (b) We are considering 
here only permutations on one of the two enantiomeric forms. This sim­
plification reduces the number of possibilities by one-half with no loss of 
information. To treat helicity as well, one has to consider permutation in­
versions,9 which effectively doubles the size of the groups by forming 
direct products, P X C1. 

(9) H. C. Longuet-Higgins, MoI. Phys., 6, 445 (1963). 
(10) (a) Note that it is possible for nonunique normal subgroups to be equiva­

lent by outer automorphisms (C2 C D2) and for normal and nonnormal 
subgroups to have the same designation (02 h C Oh). (b) G. Polya, J. 
Symb. Logic, 5, 98 (1940). (c) A character table for this group has been 
published: D. E. Littlewood, "The Theory of Group Characters", Oxford-
Clarendon Press, 1940, p 278. 

(11) J. I. Musher, J. Am. Chem. Soc, 94, 5662 (1972). 
(12) W. Hasselbarth and E. Ruch, Theor. Chim. Acta, 29, 259 (1973). 
(13) W. G. Klemperer, J. Chem. Phys., 56, 5478 (1972). 
(14) P. Meakin, E. L. Muetterties, F. N. Tebbe, and J. P. Jesson, J. Am. 

Chem. Soc, 93, 4701 (1971). 
(15) The number, n, of double cosets is easily found by using the formula12 

Is4[S2; 
Is4]2 

where C, is a conjugacy class in S4[S2], and the previously cited10 

character table. 
(16) Absolute configuration refers to the central atom Z and is defined by 

numbering the rings. An odd permutation of rings will change the config­
uration at Z; an even permutation will maintain it. 

(17) Note that the permutations corresponding to the S4 and S4
3 operations 

lie outside Gi92 since they invert the configuration16 at carbon. 
(18) The symbol nFmP means that n rings are flipped and m rings are per­

muted by this mode. Mode 13 (0F0P) is simply the C2 rotation group. 
Modes with the same number designated a or b are inverses of each 
other. 

(19) (a) J. S. Frame, Su//. Am. Math. Soc, 47, 458 (1941); 49, 81 (1943); 54, 
740 (1948). (b) D. J. Klein and A. H. Cowley, J. Am. Chem. Soc, 97, 
1633(1975). 

(20) (a) See W. G. Klemperer, J. Am. Chem. Soc, 94, 6940 (1972); 95, 380 
(1973), for excellent discussions on the visualization of the effect of the 
various group-theoretic equivalences, (b) J. Brocas and R. Willem, Bull 
Soc. Chim. BeIg., 82, 469 (1973). 

(21) The symbol (1423I=1= means that rings 1, 4, 2, 3 are permuted and all the 
angle descriptions change sign for a mode in Table II. These correspond 
to skeletal permutations. 

(22) A recent attempt23 to enumerate all of the interconversion mechanisms 
for a generalized Ar4Z system was patterned on the intuitive, nongroup 
theoretical approach which had previously been successfully employed 
in the analysis of analogous but far simpler di- and triaryl systems.7 

However, it is evident that this approach is unsatisfactory for systems 
as complex as the tetraarylmethanes since only nine mechanisms were 
found.23 These correspond to the 24 modes in this paper as follows: 1 
-> 21; 2 — 14; 3 — 23; 4 — 20 and 24; 5 — 22; 6 — 12; 7 — 10; 8 
-•» 3 or 4; 9 - • 7 and 8, where the first number of each pair refers to 
the mechanism discussed by Strohbusch,23 and the second number to 
the mode in Table I. 

(23) F. Strohbusch, Tetrahedron, 30, 1261 (1974). 

Nourse, Mislow / Dynamic Stereochemistry of Tetraarylmethanes 



4578 

(24) See M. Hall, Jr., "The Theory of Groups", Macmillan, New York, N.Y., 
1959, Chapter 19, for a discussion of subgroup lattices. 

(25) Note that this will not necessarily be a survey of all subgroups of G192 
which contain C2 since the modes in Table I do not correspond to dou­
ble cosets of C2 in G,92. They are, rather, collections of these double 
cosets. 

(26) "Maximally labeled structure" means a structure in which all four aryl 
rings are different and none possesses a local C2 axis. 

(27) Related ideas of descriptors and "stereochemical quantum numbers" 
have been discussed.28,69 

(28) E. Ruch and l.'Ugi, Top. Stereochem., 4, 99 (1969). 
(29) P. Gillespie, P. Hoffman, H. Klusacek, D. Marquarding, S. Pfohl, F. Ram­

irez, E. A. Tsolis, and I. Ugi, Angew. Chem., Int. Ed. Engl., 10, 687 
(1971). 

(30) The number of possible descriptor sets corresponds to the number of 
isomers, as described (2-3-2-24 = 192). 

(31) Interesting and subtle details of this nomenclature problem depend on 
the full structure of this subgroup lattice (Figure 2). An unambiguous 
designation of helicity in isomers differing in S4 axis orientation is not 
possible, for the reason that there is no group which acts on the S4 axis 
orientation descriptor without acting also on the helicity descriptor. This 
can be verified by referring to Tables I and V and Figure 2. A group 
which acts only on the orientation descriptor would have to be of order 
6. In the above example, ring 1 was arbitrarily fixed so that the neces­
sary distinction could be made. 

(32) (a) Reference 24, Chapters 8 and 9; (b) J. J. Rotman, "The Theory of 
Groups, An Introduction", Allyn and Bacon, Boston, Mass., 1965, Chap­
ter 6. 

(33) It should be pointed out that this will not be an obvious property in the 
general case. In the tetraaryl systems, the values of the seven descrip­
tors are just the prime factors of the number of isomers (2-3-2-24 = 
192); this occurs because 84[S2] is a solvable group.32 In chemical 
problems involving permutation groups, in particular the symmetric 
groups S„ (n > 5), this result will not obtain since these groups are not 

The erythromycin antibiotics are representative members 
of a group of natural products which possess unique struc­
tural and conformational characteristics. The aglycon of 
these glycosidic compounds, a 14-membered macrocyclic 
ring, possesses surprising conformational stability which is 
evidenced by its spectroscopic properties and the nature and 
selectivity of its chemical reactivity. Previously reported 
studies in these laboratories3 using 1H NMR and CD data 
have shown the conformation of erythronolide B (1) to be 
that depicted in Figure 1. These studies have indicated that 
the stability of this conformation is probably a consequence 
of the adoption of a diamond-lattice type framework of the 
ring atoms. In addition, the unique substitution pattern of 
this macrocycle confers additional rigidity by minimizing 
internal interactions and at the same time preventing free 
rotation of carbon-carbon bonds. 

Throughout the series of derivatives studied, it was clear 
that a large degree of conformational homogeneity existed 
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as evidenced by the consistency of proton chemical shifts 
and coupling constants. As more and more members of the 
series were examined, however, it became apparent that 
subtle conformational effects were occurring as a result of 
certain substituent changes on the macrocyclic ring. It was 
felt that a more detailed scrutiny of the 1H NMR and CD 
spectra of these compounds and the use of the more recent 
13C NMR spectroscopic technique would provide useful in­
formation about these subtle changes. This paper discusses 
the studies carried out using 'H NMR and CD instrumen­
tation. 

Experimental Section 

The 1H NMR spectra which will be discussed in the following 
sections were obtained on a Varian Associates HA-100 spectrome­
ter operating in frequency sweep. Chemical shifts are reported in 
parts per million (5) downfield from internal tetramethylsilane, 
and coupling constants are reported in hertz. Both chemical shifts 
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Abstract: Detailed analyses of 1H NMR and CD spectra of derivatives of erythronolide B have revealed that this aglycon 
ring is conformationally flexible. The general diamond-lattice type conformation is maintained with subtle modification in 
either the C-2 through C-5 or C-6 through C-9 ring segments depending on the nature and position of ring substituents. 
Variable temperature measurements in a series of O-acetyl derivatives have indicated that the conformational changes in 
these two regions are interdependent and enabled the determination of the limiting conformations which are populated to 
different extents in this series. 
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